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a b s t r a c t

This paper proposes a model reference control (MRC) scheme for general discrete-time linear
time-invariant (LTI) systems subject to output quantization and saturation. In such a scheme, the
quantized-output feedback MRC law is analytically specified only by using external reference input and
saturated-and-quantized output. It is proven that, by appropriately designing the sensitivity of the
quantizer, the MRC law can ensure that all closed-loop signals are bounded and the output tracking
error converges to a certain small residual set in a certain finite time only under the minimum-phase
condition. Particularly, the proposed MRC scheme does not rely on the coprimeness of zero and pole
polynomials or initial conditions that are commonly used in the related literature. A representative
example is given to demonstrate the design procedure and verify the validity of the proposed MRC
scheme.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decades, we have witnessed a fast growing
nterest in how to effectively control linear and nonlinear systems
ubject to quantized and/or saturated measurements. One may
efer to some overviews (Jiang & Liu, 2013; Tarbouriech & Turner,
009). On one hand, traditional state or output feedback control
ethods are generically not able to be directly used for systems
ubject to quantized and/or saturated measurements. Thus, it is of
mportance to systematically develop quantized and/or saturated
ontrol theory. On the other hand, in real control systems, it often
eeds to overcome the restrictions of quantization and saturation
roblems, especially in networked control systems and digital
ontrol systems. Comparing to traditional control methods, quan-
ized feedback control methods greatly reduce the requirement
or sensor accuracy and magnitude. Moreover, in view of anti-
oises, quantized feedback control has stronger robustness than
xact feedback control. In a word, it is of greatly theoretical

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Hernan
Haimovich under the direction of Editor Sophie Tarbouriech.
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and practical importance to address quantized and/or saturated
feedback control systems.

So far, quantized feedback control theory and applications
have gained long-term developments, and a lot of remarkable
results have been published. Quantized control research can be
traced back to the 1960s (Larson, 1967). From then on, vari-
ous quantized control methods have been published (Baillieul,
1999; Elia & Mitter, 2001; Fu & Xie, 2005; Gao & Chen, 2008;
Hayakawa et al., 2009; Hespanha et al., 2002; Ishii & Francis,
2003; Li & Baillieul, 2004; Nair & Evans, 2000; Phat et al., 2004;
Tatikonda & Mitter, 2004; Wong & Brockett, 1999; Yan et al.,
2019). Quantized control idea was also widely used in multi-
agent consensus or formation (Dimarogonas & Johansson, 2010;
Franceschelli et al., 2011, 2014; Meng et al., 2016; Zhang &
Zhang, 2013) and stochastic control systems (Liu et al., 2018;
Wang et al., 2016a, 2016b). Considering that static quantization
is difficult to realize global or semi-global convergence, Brockett
and Liberzon (2000) for the first time proposed the dynamic
quantization based control methodology. In Brockett and Liber-
zon (2000), the proposed methods achieve global or semi-global
stabilization for LTI systems. Since then, dynamic quantization
based stabilization problems have been systematically studied
and consequently significant results were published (Fu & Xie,

2009; Liberzon, 2003; Liu et al., 2012; Moustakis et al., 2018). A
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ystematic overview for stabilization of quantized feedback con-
rol systems has been given in Jiang and Liu (2013). While many
uantized feedback control methods are focused on stability and
tabilization problems, the quantized feedback tracking problem
s of more practical meaning and has attracted a great deal of
ttention. In recent years, a lot of researchers turn to address
he tracking control problems for systems with quantized mea-
urement, and achieve significant progress (Bikas & Rovithakis,
020; Fan et al., 2022; Liu et al., 2021; Lu & Liu, 2020; Ma et al.,
020; Sui & Tong, 2016; Yu et al., 2018; Yu & Lin, 2016; Zhou
t al., 2018, 2013; Zouari et al., 2017). Quantized feedback control
esigns of nonlinear systems are mainly based on the well-known
ackstepping technique developed in Krstic et al. (1995). There
re a vast number of related papers, and we are not able to list
hem all.

In recent years, under the foundation of standard MRC theory
n Tao (2003), we addressed some problems yet to be solved in
he literature, and published some results, for instance, Zhang
t al. (2020, 2019, 2021). With our specialized experience, the
emarkable result in Brockett and Liberzon (2000) motivates us
o consider whether the quantized stabilizing method in Brock-
tt and Liberzon (2000) can be extended to quantized-output
eedback MRC control of discrete-time LTI systems. Consider a
eneral class of discrete-time LTI systems described by A(z)y(t) =

pB(z)u(t), where y and u are the output and input, respectively,
is the forward shift operator, kp ̸= 0 is the high-frequency
ain, and A(z) and B(z) are monic polynomials with constant
oefficients and of degrees of n and m. It is well-known that the
raditional MRC law is of the form u(t) = θ∗T

1 φ1(t) + θ∗T
2 φ2(t) +

∗

3 r(t), where θ∗

1 , θ∗

2 , θ∗

3 are constant parameters of appropriate
imensions, φ1(t), φ2(t) are well-defined signals, and r(t) is an
xternal reference input signal (Tao, 2003, 2014). Up to now, it
s still unclear whether a saturated-and-quantized output feed-
ack version of the traditional MRC law is still effective. Such
problem is never addressed before in the literature. In this
aper, we for the first time give a positive answer. Based on the
utput feedback MRC theory in Tao (2003), we establish a ba-
ic quantized-output feedback MRC framework for discrete-time
TI systems only under the minimum-phase condition, i.e., the
olynomial B(z) is stable. In particular, the system observable
r controllable condition, commonly used in existing quantized-
utput feedback control methods, is no longer needed in this
aper. In summary, the contributions of this paper are as follows.

(i) A quantized-output feedback MRC scheme is developed for
a general class of discrete-time LTI systems. We show that
a quantized-and-saturated version of the standard MRC law
is valid for control of the above systems.

(ii) In comparison with existing literature, the proposed MRC
law has distinctive characteristics. First, only using external
reference input and saturated-and-quantized output, the
MRC law is analytically constructed. Second, only under the
minimum phase condition, the MRC law can ensure that
all closed-loop signals are bounded and the output tracking
error converges to a certain residual set in a certain finite
time. Last but not the least, the MRC law is independent of
the system initial conditions.

(iii) The validity of the proposed MRC scheme is verified by a
representative example with simulation results.

otation: In the sequel, we use R, R+, Z to denote the sets of
eal numbers, positive real numbers, and integers, respectively.
e use z and z−1 to denote the forward and backward shift
perators, i.e., zx(t) = x(t + 1) and z−1x(t) = x(t − 1), where
∈ {0, 1, 2, 3, . . .}, x(t) ≜ x(tT ) for a sampling period T > 0,
nd x(t) denotes any signal of any finite dimension. We also use s

2

he notation L∞ and [·]: L∞ denotes a signal space defined as
∞

= {X(t) : ∥X(·)∥∞ < ∞} with ∥X(·)∥∞ ≜ supt≥0 |X(t)|; and
·] is defined as [X(t)] ≜ max{k ∈ Z : k < X(t)}, where X(t) ∈ R
denotes any signal on R. We use the notation: y(t) = G(z)u(t), to
denote the output y(t) of a discrete-time LTI system represented
by a transfer function G(z) with input u(t). This notation is simple
to combine both time and z-domain signal operations, helpful
for control design and analysis, and useful to avoid causality
contradiction problems and complex convolution expressions for
control system presentation. Similar notation can be seen in Chen
and Zhang (1990), Goodwin and Sin (1984), Tao (2003).

2. Problem statement

This section presents the system model and the problems to
be addressed in this paper.

System model. Consider the following discrete-time single-input
and single-output (SISO) LTI system:

A(z)y(t) = kpB(z)u(t), t ≥ t0, (1)

here t0 is the initial time of the system operation, kp ̸= 0 is
he constant high-frequency gain, and A(z) and B(z) are monic
olynomials with constant coefficients and of degrees of n and
, respectively, i.e.,

(z) = zn + an−1zn−1
+ · · · + a1z + a0,

B(z) = zm + bm−1zm−1
+ · · · + b1z + b0.

Note that n − m is the input–output delay, and also called the
system relative degree (Tao, 2003). For the system model (1), we
assume that: the values of y(t) cannot be accurately measurable,
nd one can only acquire finite quantized values of y(t), denoted
s q(y(t), ∆(t)), where q : R × R+

→ Z is the quantizer, and
(t) > 0 is a time-varying signal and called as the sensitivity of

he quantizer (Brockett & Liberzon, 2000).

ynamic quantizer. The quantizer in this paper is the same with
hat in Brockett and Liberzon (2000) and has the form

q(X(t), ∆(t))⎧⎪⎨⎪⎩
M, if X(t) > (M +

1
2 )∆(t),[

X(t)
∆(t) +

1
2

]
, if −(M +

1
2 )∆(t) < X(t) ≤ (M +

1
2 )∆(t),

−M, if X(t) ≤ −(M +
1
2 )∆(t),

(2)

where M ∈ Z is a positive integer.
As stated in Brockett and Liberzon (2000), the form (2) of the

quantizer has some certain physical meanings and potential ap-
plications, such as vision-based control. One may refer to Brockett
and Liberzon (2000) to see a full clarification for the quantizer
(2). The authors in Brockett and Liberzon (2000) proposed (2) to
address the stabilization problem, while we use (2) in this paper
to address the MRC problem that covers the stabilization problem
as a special case.

Reference output model. The reference model is

y∗(t) = Wm(z)r(t), Wm(z) =
1

Pm(z)
, (3)

where Pm(z) is a stable monic polynomial of degree n − m and
(t) ∈ R is an external reference input signal such that r(t) ∈ L∞.
or discrete-time MRC, it is common to choose Pm(z) = zn−m so
hat
∗(t) = r(t − n + m). (4)

ontrol objective. For any given y∗(t) ∈ L∞, the control objective
s to develop a quantized-output feedback control law u(t) for the
ystem (1) to ensure that closed-loop signals are bounded and
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(t) − y∗(t) converges to a certain small residual set in a certain
finite time.

Assumption. To meet the control objective, we only need the
following assumption.

(A1): The polynomial B(z) is stable.

Assumption (A1) requires the system (1) to be minimum-
hase, which is needed for analyzing internal signal boundedness
Tao, 2003). Assumption (A1) indicates that the polynomials A(z)
and B(z) are not required to be coprime, i.e., we allow common
zeros and poles in the transfer function of the system (1).

Assumption (A1) is a consequence of zero-pole cancellations in
MRC of LTI systems. The proposed MRC law will cancel the zeros
of the system (1) and replaces them with those of the reference
model. For stability, such cancellations should occur inside the
unit circle of the complex z-plane, which implies that B(z) should
be stable. Similar explanations can be seen in Goodwin and Sin
(1984), Ioannou and Sun (2012), Sastry and Bodson (1989), Tao
(2003).

3. Fundamentals of output feedback MRC

We review some fundamentals of output feedback MRC of
discrete-time LTI systems in Tao (2003), which will be used in
quantized-output feedback MRC design.

Matching equation. Before giving the MRC law, we first present
the following lemma which specifies a key equation for the
control law design.

Lemma 1 (Tao, 2003). There exist constant vectors θ∗

1 ∈ Rn−1 and
θ∗

2 ∈ Rn such that

θ∗T
1 ω1(z)A(z) + kpθ∗T

2 ω2(z)B(z) = A(z) − B(z)zn−m, (5)

where ω1(z)=[z−n+1, . . . , z−1
]
T and ω2(z)=[z−n+1, . . . , z−1, 1]T .

The proof of this lemma can be seen in Tao (2003). Eq. (5) is
the well-known matching equation for output feedback MRC of
LTI systems (Tao, 2003).

Output feedback MRC law. With θ∗

1 and θ∗

2 in (5), the MRC law
is designed as

u(t) = θ∗T
1 φ1(t) + θ∗T

2 φ2(t) +
1
kp

r(t), t ≥ t0, (6)

with

φ1(t) = ω1(z)u(t), φ2(t) = ω2(z)y(t). (7)

The following lemma specifies the MRC law capability.

Lemma 2 (Tao, 2003). There exist unique θ∗

1 and θ∗

2 that meet (5)
and guarantee that the MRC law (6) which is applied to the system
(1) leads to closed-loop stability and

y(t + n − m) − y∗(t + n − m) = 0, ∀t ≥ t0. (8)

The proof of Lemma 2 can be seen in Tao (2003). The parame-
ters θ∗

1 and θ∗

2 in Lemma 2 are the so-called matching parameters
because with these parameters the control law (6) leads to exact
matching of the closed-loop system to the reference model (3).

Remark 3. Note that if A(z) and B(z) are not coprime, θ∗

1 and
θ∗

2 satisfying (5) are not unique. However, Lemma 2 indicates
that, no matter whether A(z) and B(z) are coprime or not, the
parameters θ∗

1 and θ∗

2 in (6) are unique. This characteristic is
proven in Tao (2003) and also can be concluded from the proof of
Lemma 4 in the sequel. The proof of Lemma 4 also specifies how
to determine the unique parameters θ∗

1 and θ∗

2 especially for the
case when A(z) and B(z) are not coprime. □
3

Lemmas 1–2 are the fundamentals of MRC of discrete-time
LTI systems and also the foundation of the quantized-output
feedback MRC scheme that will be systematically addressed in
the sequel.

4. Quantized-output feedback control design

Based on Lemmas 1–2, this section develops a quantized-
output feedback MRC scheme for the system (1).

4.1. Quantized-output feedback MRC law structure

The standard MRC law (6) motivates us to design the
quantized-output feedback MRC law of the structure

u(t) = θ∗T
1 φ1(t) + θ∗T

2 φq(t) +
1
kp

r(t), t ≥ t0, (9)

where θ∗

1 , θ∗

2 are the unique parameters in Lemma 2, and

q(t) = ω2(z)(∆(t)q(y(t), ∆(t)))

ith ∆(t) to be designed later.

racking error equation. Define the quantized error and the
racking error as

(y(t), ∆(t)) = ∆(t)q(y(t), ∆(t)) − y(t),
e(t) = y(t) − y∗(t),

espectively. Now, we give the following lemma which specifies
he tracking error equation that will be crucial for the sensitivity
(t) design and stability analysis.

emma 4. The quantized-output MRC law (9), applied to the system
1), ensures

(t + n − m) = kpθ∗T
2 ω2(z)s(y(t), ∆(t)), ∀ t ≥ t0. (10)

roof. From (5), we have

θ∗T
1 ω1(z) − 1)A(z) = (−kpθ∗T

2 ω2(z) − zn−m)B(z). (11)

e first consider the case when A(z) and B(z) are coprime. It
ollows from (11) that, if zi is a zero of B(z), it must be a zero
f θ∗T

1 ω1(z)− 1, otherwise (11) does not hold for z = zi with B(z)
nd A(z) being coprime. Thus, we conclude that there exists some
olynomial

(z) = −z−m
+ fn−m−2z−m−1

+ · · · + f0z−n+1

with fi, i = 0, . . . , n−m−2, being constant coefficients such that

F (z)B(z) = θ∗T
1 ω1(z) − 1. (12)

n addition to (11), we obtain

pθ
∗T
2 ω2(z) + F (z)A(z) = −zn−m. (13)

hen, operating both sides of (13) on y(t) yields

kpθ∗T
2 ω2(z)y(t) + F (z)A(z)y(t) = −y(t + n − m).

Together with (1), (7) and (12), we have

kpθ∗T
2 φ2(t) + kp(θ∗T

1 ω1(z) − 1)u(t) = −y(t + n − m).
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fter some manipulations with (4), (7), (9), we obtain

y(t + n − m) − y∗(t + n − m)
kpθ∗T

2 (φq(t) − φ2(t)) = kpθ∗T
2 ω2(z)s(y(t), ∆(t)).

Now we consider the case when A(z) and B(z) are not coprime.
In this case, we rewrite B(z) as B(z) = B1(z)B2(z) such that B1(z)
has degree n1 and B2(z) and A(z) are coprime. Then, there exist
unique parameters θ̄∗

1 ∈ Rn−1−n1 and θ∗

2 ∈ Rn such that

zn−1−n1 θ̄∗T
1 ω̄1(z)A(z) + kpθ∗T

2 zn−1ω2(z)B2(z)

= zn−1−n1A(z) − zn−1B2(z)zn−m (14)

with ω̄1(z) = [z−n+n1+1, . . . , z−1
]
T . With some manipulations,

(14) becomes

z−n1 θ̄∗T
1 ω̄1(z)A(z) + kpθ∗T

2 ω2(z)B2(z)

= z−n1A(z) − B2(z)zn−m. (15)

Similar to (12), there exists some polynomial of the form

F̄ (z) = −z−m+n1 + f̄n−m+n1−2z−m+n1−1

+ · · · + f̄0z−n+n1+1

such that F̄ (z)B2(z) = θ̄∗T
1 ω̄1(z) − 1. Let F (z) = z−n1 F̄ (z). Then, in

addition to (15), we also obtain (13), based on which the lemma’s
result follows. Note that, for the non-coprime case, the parameter
θ∗

1 is uniquely determined from the equation θ∗T
1 ω1(z) − 1 =

(θ̄∗T
1 ω1(z) − 1)B1(z)z−n1 = F (z)B(z). □

The tracking error equation (10) implies that exact output
feedback, i.e., s(y(t), ∆(t)) = 0, can achieve exact output tracking.
However, for the quantized-output feedback case, before design-
ing ∆(t), it cannot be sure whether s is bounded or not. Thus,
the tracking error equation (10) does not imply the boundedness
of e.

4.2. Technical lemmas

To proceed, we give the following two lemmas helpful to
design ∆(t). Define

λ ≜ an upper bound of max{1 + magnitudes of λi(A(z))}, (16)

where λi(A(z)), i = 1, 2, . . . , n, denote the zeros of A(z) on the
complex z-plane.

Now, we give the following lemma.

Lemma 5. For the system (1), if u(t) = 0 and ∆(t) = c0λkt with
c0 > 0 and k > 1 being any two constants, then there always exists
a well-defined number t1 as

t1 ≜ min {t ≥ t0 + 1 : |q(y(t), ∆(t))| ≤ M − 1} . (17)

Proof. If u(t) = 0, y(t) grows at most exponentially and |y(t)| ≤

k0(λ − 1)t with k0 being some constant. If ∆(t) = c0λkt with
c0 > 0 and k ≥ 1, ∆(t) grows faster than |y(t)|. Thus, no matter
whether q(y(t0), ∆(t0)) saturates or not, there exists some finite
time instant tp such that q(y(t), ∆(t)) will never saturate for all
t ≥ tp. Then, the lemma’s result follows from the definition of q
in (2). □

To design ∆(t), we also need the following lemma.

Lemma 6. If |y(t)| ≤ (M −
1
2 )∆(t), then

|s(y(t), ∆(t))| ≤
1
2
∆(t).

The proof of Lemma 6 is not difficult to perform. We omit it
or space. Next, with Lemmas 5–6, we systematically address how
o specify ∆(t).
4

4.3. Control design for systems with n − m = 1

To show the basic ideas, we first consider the relative degree
ne case. Then, we address the general case.

uantized-output MRC law for relative degree one case. For the
system (1) with n − m = 1, if there exists an integer N ≥ 1 such
that

M −
1
2

≥
1

γ N−1

(
c + 1 +

d
c0λkt1

)
(18)

with c0, k, γ being constants such that c0 > 0, k > 1 and
0 < γ < 1, and

c ≜ an upper bound of
1
2
|kp|∥θ∗

2 ∥1, (19)

d ≜ an upper bound of |y∗(t)|,

then the quantized-output feedback MRC law is designed as

u(t)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ∈ [t0, t1),
θ∗T
1 φ1(t) +

1
kp
r(t)

+θ∗T
2 ω2(z)(∆(ti)q(y(t), ∆(ti))), t ∈ [ti, ti+1),

i = 1, . . . ,N − 1,
θ∗T
1 φ1(t) +

1
kp
r(t)

+θ∗T
2 ω2(z)(∆(tN )q(y(t), ∆(tN ))), t ∈ [tN , ∞),

(20)

here ∆(t) = c0λkt for t ∈ [t0, t1), and

(ti) = c0γ i−1λkt1 , i = 1, 2, . . . ,N, (21)

with λ in (16), t1 in (17), and ti, i = 2, 3, . . . ,N , as

ti ≜ min
{

t ≥ ti−1 + 1 :

|q(y(t), ∆(ti−1))| ≤
c∆(ti−1) + |y∗(t)|

∆(ti−1)
+

1
2

}
. (22)

ystem performance analysis. With the MRC law (20), we derive
ne of the main results as follows.

heorem 7. Under Assumption (A1), if the inequality (18) holds,
hen the quantized-output feedback MRC law (20), applied to the
ystem (1) with n − m = 1 and any unmeasurable y(t0) ∈ R,
ensures that all closed-loop signals are bounded and the tracking
error satisfies

|e(t)| ≤ c0cλkt1γ N−1, ∀t ≥ tN + 1. (23)

roof. For any unmeasurable y(t0) ∈ R, Lemma 5 ensures the
xistence of t1. When t = t1, from the definition of the quantizer
n (2), we have |y(t1)| ≤ ∆(t1)

(
M −

1
2

)
. Moreover, when t = t1,

we change the control law from u(t) = 0 to (20) with ∆(t) =

∆(t1). Then, from Lemma 4, we have

y(t1 + 1) − y∗(t1 + 1) = kpθ∗T
2 ω2(z)s(y(t1), ∆(t1)). (24)

ince q does not saturate at t = t1, Lemma 6 implies

s(y(t1), ∆(t1))| ≤
1
2
∆(t1). (25)

oreover, based on the fact that ∆(t) < ∆(t1) for all t < t1,
ombining (24) and (25) yields

y(t1 + 1)| ≤ c∆(t1) + |y∗(t1 + 1)|

hich follows from (18) that

y(t1 + 1)| ≤ ∆(t1)
(
M −

1
)

.

2
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hus, q(y(t1 + 1), ∆(t1)) also does not saturate. Then, we can
urther verify that q(y(t1+2), ∆(t1)) does not saturate, neither do
(y(t1 + 3), ∆(t1)), q(y(t1 + 4), ∆(t1)), . . .. Therefore, we conclude

that, if the control law is chosen as (20) with ∆(t) = ∆(t1) for
t ≥ t1, q(y(t), ∆(t)) will never saturate. Moreover, e(t) satisfies
that

|e(t)| ≤ c∆(t1), ∀t ≥ t1 + 1.

Thus, there exists a well-defined number t2 in (22). Then, when
t = t2, we change the control law to (20) with ∆(t) = ∆(t2) =

∆(t1). Then,

|y(t2)| ≤ ∆(t2)
(
M −

1
2

)
hich implies that q(y(t2), ∆(t2)) does not saturate. Thus, using

Lemma 4, we obtain

|y(t2 + 1)| ≤ c∆(t2) + |y∗(t2 + 1)|.

Together with (18), if N ≥ 2, we have

|y(t2 + 1)| ≤ ∆(t2)
(
M −

1
2

)
hich implies that q(y(t2 +1), ∆(t2)) does not saturate. Then, we
an also verify that q(y(t2+2), ∆(t2)) does not saturate, neither do
q(y(t2 + 3), ∆(t2)), q(y(t2 + 4), ∆(t2)), . . .. Therefore, we conclude
that, if the control law is chosen as (20) with ∆(t) = γ∆(t1) for
t ≥ t2, q(y, ∆) will never saturate and e(t) satisfies that

|e(t)| ≤ γ c∆(t1), ∀t ≥ t2 + 1.

Repeating the above procedure, we define t3, t4, . . . , tN and ob-
tain a sequence {∆(ti)}1≤i≤N . One can verify that the control law
(20) ensures that e(t) satisfies (23). By y∗(t) ∈ L∞, we have y(t) ∈

L∞. Under Assumption (A1), the boundedness of y(t) implies that
of u(t). □

Based on (18) and (23), Theorem 7 indicates that if M is larger,
N can be chosen larger and it follows from (23) that e(t) can be
made smaller.

Remark 8. For the sake of explanation, ti+1 in (22) can be roughly
understood as the time when e(t) first reaches the set {e(t) :

|e(t)| ≤ c∆(ti)}. In the proof of Theorem 7, we have shown that
the proposed MRC law (20) with ∆(t) = ∆(ti) and t ≥ ti ensures
that e(t) reaches the above set in a finite time and remain inside
thereafter. Note that we cannot use e(t) to define ti as e(t) is
not available. Instead, we use available signals ∆(ti) and y∗(t) to
define ti+1 in (22). The finite time convergence of e(t) guarantees
that ti+1 in (22) is always existing and finite. □

4.4. Control design for systems with an arbitrary relative degree

Now, we give the following theorem which shows that the
quantized-output MRC law (20) is also effective for the system
(1) with n − m > 1.

Theorem 9. Under Assumption (A1), if there exists an integer
N ≥ 1 such that

M −
1
2

≥
1

γ N−1

(
c + 1 +

d
c0λk(t1+n−m−1)

)
(26)

with c0, k, γ , c, d being the same as before, then the quantized-
output MRC law (20) with ∆(t) = c0λkt for t ∈ [t0, t1) and

(t ) = c γ i−1λk(t1+n−m−1), i = 1, 2, . . . ,N, (27)
i 0 i

5

with t1 in (17) and ti in (22), applied to the system (1) with any
unmeasurable y(t0) ∈ R and 1 ≤ n − m ≤ n, ensures that all
losed-loop signals are bounded and

e(t)| ≤ c0cλk(t1+n−m−1)γ N−1, ∀t ≥ tN + n − m. (28)

roof. Similar to the n − m = 1 case, for any unmeasurable
(t0) ∈ R, Lemma 5 ensures the existence of t1. When t = t1,
t follows the definition of the quantizer in (2) that

y(t1)| ≤ c0λkt1

(
M −

1
2

)
.

or t ≥ t1, we change the control law from u(t) = 0 to (20) with
(t) = ∆(t1) in (27). In particular, when we change the control

aw at t = t1, due to the input–output delay n − m, the control
aw (20) does not influence y(t1+ j), j = 1, 2, . . . , n−m−1. Thus,
ased on the fact that c0λkt grows faster than y(t), we have

y(t1 + j)| ≤ c0λk(t1+j)
(
M −

1
2

)
≤ ∆(t1)

(
M −

1
2

)
(29)

or j = 0, 1, . . . , n − m − 1 and ∆(t1) = c0λk(t1+n−m−1).
Then, (29) implies that y(t1 + j), j = 0, 1, . . . , n−m− 1, all do

not saturate. Moreover, for j = 0, 1, . . . , n−m−1, from Lemma 4,
we have

y(t1 + n − m + j) − y∗(t1 + n − m + j)
= kpθ∗T

2 ω2(z)s(y(t1 + j), ∆(t1)). (30)

From (29) and Lemma 6, we obtain |s(y(t1 + j), ∆(t1))| ≤
1
2∆(t1)

or j = 0, 1, . . . , n−m− 1. Thus, together with (26) and (30), we
ave

y(t1 + n − m + j)| ≤ ∆(t1)
(
M −

1
2

)
which implies that q(y(t1+n−m+j), ∆(t1)), j = 0, 1, . . . , n−m−1,
ll do not saturate. Repeating the above procedure, we can further
erify that q(y(t1 + n−m+ j), ∆(t1)) for all j > n−m− 1 do not
aturate. Thus, we conclude that, if ∆(t) is chosen as ∆(t1) in (27)
or all t ≥ t1, q will never saturate and e satisfies that

e(t)| ≤ c∆(t1), ∀t ≥ t1 + n − m.

hus, there exists a well-defined number t2 in (22). When t = t2,
e change the control law to (20) with ∆(t) = ∆(t2), where ∆(t2)

s defined in (27). Then, recalling the input–output delay n − m,
e derive that y(t2+ j), j = 0, 1, . . . , n−m−1, are still controlled
y (20) with ∆(t) = ∆(t1). Thus, for j = 0, 1, . . . , n − m − 1, we
ave

y(t2 + j)| ≤ γ∆(t1)
(

c
γ

+
|y∗(t2 + j)|

γ∆(t1)

)
which follows from (18) that

|y(t2 + j)| ≤ ∆(t2)
(
M −

1
2

)
.

hus, q(y(t2+j), ∆(t2)), j = 0, 1, . . . , n−m−1, all do not saturate,
based on which we can further verify that q(y(t2+j), ∆(t2)) do not
aturate for all j ≥ n−m. Hence, we conclude that, if the control
aw is chosen as (20) with ∆(t) = ∆(t2) = γ∆(t1) for t ≥ t2, q
ill never saturate and e satisfies that

e(t)| ≤ γ c∆(t1), ∀t ≥ t2 + n − m.

epeating the above procedure, we define t3, t4, . . . , tN of the
orm (22), and obtain a sequence {∆(ti)}1≤i≤N . Then, it can be
erified that the control law (20) with ∆(t) = ∆(ti) that is defined
n (27) ensures that e(t) satisfies (28). Since y∗(t) ∈ L∞, we
ave y(t) ∈ L∞. Under Assumption (A1), the boundedness of y(t)
mplies that of u(t). □
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So far, we have derived a complete quantized-output feedback
MRC scheme for the system (1) with an arbitrary relative degree,
which meets the control objective.

5. Simulation study

In this section, a representative example is given to illustrate
the design procedure and the validity of the theoretical results.

Simulation model. Consider the following system

As(z)y(t) = kpsBs(z)u(t), (31)

here kps = 1, and

s(z) = (z + 1)(z − 2)
(
z +

1
2

)
, (32)

Bs(z) = z
(
z +

1
2

)
. (33)

t follows from (32) and (33) that As(z) is unstable and Bs(z) is
table. Moreover, As(z) and Bs(z) have a common factor z +

1
2

hich is corresponding to the uncontrollable or unobservable
ode of the state–space form.

pecification of θ∗

1 , θ
∗

2 and y∗(t). A key step for constructing the
quantized-output feedback MRC law (20) is to specify θ∗

1 ∈ R2

and θ∗

2 ∈ R3. Note that θ∗

1 and θ∗

2 in (20) are the same with those
in the standard output feedback MRC law (6). Thus, following the
procedure of deriving θ∗

1 and θ∗

2 for standard output feedback
MRC law of general discrete-time LTI systems in Tao (2003), we
calculate θ∗

1 and θ∗

2 as

θ∗

1 =

[
0, −

1
2

]T

, θ∗

2 =

[
−1, −

5
2
, −

1
2

]T

. (34)

oreover, φ1(t) and φ2(t) are specified as

φ1(t) = ω1(z)u(t), ω1(z) = [z−2, z−1
]
T , (35)

φ2(t) = ω2(z)y(t), ω2(z) = [z−2, z−1, 1]T . (36)

The reference output signal is chosen as

y∗(t) =
1
2
sin(t) −

1
3
cos(0.5t). (37)

ne can verify that exact output tracking can be achieved by
pplying the standard MRC law (6) with θ∗

1 and θ∗

2 in (34) and
1(t) and φ2(t) in (35)–(36) to the system model (31).

Quantized-output feedback MRC law. From (16) and (32), we
hoose λ = 3. From (19) and (34), we obtain that c = 4. With
37), we choose d = 1. Based on (20) and (21), the constant
parameters c0, M , k are chosen as c0 = 1, M = 3×103

+1, k = 1.
Moreover, we choose γ =

1
2 . Then, from (18), we determine

= 13. The control law in the simulation with t0 = 0 is specified
as

u(t)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t ∈ [0, t1),
1
2u(t − 1) + r(t) + ∆(ti)
·(−z−2

−
5
2 z

−1
−

1
2 )q(y(t), ∆(ti)), t ∈ [ti, ti+1),

i = 1, . . . , 12,
1
2u(t − 1) + r(t) + ∆(tN )
·(−z−2

−
5
2 z

−1
−

1
2 )q(y(t), ∆(tN )), t ∈ [tN , ∞),

(38)

where ∆(t) = 3t for t ∈ [0, t1), and

r(t) =
1
2
sin(t + 1) −

1
3
cos(0.5t + 0.5),

(ti) =
3t1

, i = 1, 2, . . . , 13, (39)

2i−1 o

6

Fig. 1. Response of output y(t) v.s. reference output y∗(t).

Fig. 2. Response of tracking error y(t) − y∗(t).

Fig. 3. Response of the quantized-output feedback MRC law (38).

ith t1 = min
{
t ≥ 1 : |q(y(t), ∆(t))| ≤ 3 × 103

}
and ti, i =

, . . . , 13, can be derived from (22). Moreover, q(y(t), ∆(t)) can
e specified from (2).

imulation results. To show the proposed control algorithm
ndependent of the initial conditions, we choose y(0) = 9000
hich is much larger than the saturated value M of the quantizer
(y(t), ∆(t)).
Fig. 1 shows the response of the system output y(t) versus

he reference output y∗(t) with Fig. 2 showing the tracking per-
ormance when t ≥ 10. From Fig. 1 and Fig. 2, we see that
atisfactory tracking is achieved when t is larger than about 18.
ig. 3 shows the response of the quantized-output feedback MRC
aw (38). Moreover, we present the response of the sensitivity
(t) in Fig. 4. In particular, the changes of ti, i = 1, 2, . . . , 13, in

39) can be clearly obtained from Fig. 4. Specifically, we see from
ig. 4 that t1 = 3, t2 = 6, t3 = 8, t4 = 9, t5 = 10, t6 = 11,
7 = 12, t8 = 13, t9 = 14, t10 = 15, t11 = 16, t12 = 17, and
13 = 18. By the way, ∆(t) =

33

212
= 0.00659 for t ≥ 18. Finally,

we present the response of the quantizer q(y(t), ∆(t)) in Fig. 5,
n which q(y(t), ∆(t)) is no longer saturated when t ≥ 3. The
volution of ∆(t) and q(y(t), ∆(t)) matches the theoretical results.
In summary, the simulation results for the system model (31)

ave not only verified the validity of the proposed method, but
lso verified the non-dependence on the initial conditions. More-
ver, recalling that As(z) and Bs(z) are not coprime, the simulation
esults also verified the non-dependence of the proposed method
n the coprime condition of zero and pole polynomials.
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Fig. 4. Response of ∆(t).

Fig. 5. Response of the quantizer q(y(t), ∆(t)).

6. Concluding remarks

This paper has given a positive answer to the question:
whether a quantized-output feedback version of the standard
MRC law (20) is still effective for control of general discrete-
time LTI systems without any additional design conditions. The
quantized-output feedback MRC law is analytically constructed,
and only replies on the minimum-phase condition.

It would be interesting to further consider the following prob-
lems: (i) if the coefficients of A(z) and B(z) are unknown, how to
realize adaptive control based on the proposed control scheme in
this paper? (ii) if B(z) is not stable, that is, the system (1) is non-
minimum phase, whether a quantized-output feedback version
of the well-known pole placement method in Tao (2003) is still
effective to achieve closed-loop stability and output tracking? (iii)
whether the proposed method in this paper can be extended to
the nonlinear systems case? These deserve further investigation.

Acknowledgments

This work was supported in part by National Key R&D Program
of China under Grant 2018YFA0703800, in part by the National
Natural Science Foundation of China under Grants 62173323,
61877057, and 61803226, and in part by the Foundation under
Grant 2019-JCJQ-ZD-049. This work was completed when the
first author was a postdoc in the Key Laboratory of Systems and
Control, Institute of Systems Science, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences.

References

Baillieul, J. (1999). Feedback designs for controlling device arrays with commu-
nication channel bandwidth constraints. In ARO workshop on smart structures,
Vol. 1 (pp. 6–18). University Park PA.

Bikas, L. N., & Rovithakis, G. A. (2020). Tracking performance guarantees in the
presence of quantization for uncertain nonlinear systems. IEEE Transactions
on Automatic Control.
7

Brockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear
systems. IEEE Transactions on Automatic Control, 45(7), 1279–1289.

Chen, H. F., & Zhang, J. F. (1990). Identification and adaptive control for systems
with unknown orders, delaly, and coefficients. IEEE Transactions on Automatic
Control, 35(8), 866–877.

Dimarogonas, D. V., & Johansson, K. H. (2010). Stability analysis for multi-
agent systems using the incidence matrix: Quantized communication and
formation control. Automatica, 46(4), 695–700.

Elia, N., & Mitter, S. K. (2001). Stabilization of linear systems with limited
information. IEEE Transactions on Automatic Control, 46(9), 1384–1400.

Fan, D., Zhang, X., Chang, Y., & Lu, X. (2022). Global practical tracking via
disturbance rejection control for uncertain nonlinear systems with quantized
input and output. Science China. Information Sciences, 65(1), 1–3.

Franceschelli, M., Giua, A., & Seatzu, C. (2011). Quantized consensus in
Hamiltonian graphs. Automatica, 47(11), 2495–2503.

Franceschelli, M., Pisano, A., Giua, A., & Usai, E. (2014). Finite-time consensus
with disturbance rejection by discontinuous local interactions in directed
graphs. IEEE Transactions on Automatic Control, 60(4), 1133–1138.

Fu, M., & Xie, L. (2005). The sector bound approach to quantized feedback
control. IEEE Transactions on Automatic Control, 50(11), 1698–1711.

Fu, M., & Xie, L. (2009). Finite-level quantized feedback control for linear systems.
IEEE Transactions on Automatic Control, 54(5), 1165–1170.

Gao, H., & Chen, T. (2008). A new approach to quantized feedback control
systems. Automatica, 44(2), 534–542.

Goodwin, G. C., & Sin, K. S. (1984). Adaptive filtering prediction and control. New
Jersey: Prentice-Hall.

Hayakawa, T., Ishii, H., & Tsumura, K. (2009). Adaptive quantized control for
linear uncertain discrete-time systems. Automatica, 45(3), 692–700.

Hespanha, J., Ortega, A., & Vasudevan, L. (2002). Towards the control of linear
systems with minimum bit-rate. In Proc. 15th int. symp. on mathematical
theory of networks and systems.

Ioannou, P. A., & Sun, J. (2012). Robust adaptive control. NY: Courier Corporation.
Ishii, H., & Francis, B. A. (2003). Quadratic stabilization of sampled-data systems

with quantization. Automatica, 39(10), 1793–1800.
Jiang, Z. P., & Liu, T. F. (2013). Quantized nonlinear control–a survey. Acta

Automatica Sinica, 39(11), 1820–1830.
Krstic, M., Kokotovic, P. V., & Kanellakopoulos, I. (1995). Nonlinear and adaptive

control design. John Wiley & Sons Inc.
Larson, R. (1967). Optimum quantization in dynamic systems. IEEE Transactions

on Automatic Control, 12(2), 162–168.
Li, K., & Baillieul, J. (2004). Robust quantization for digital finite communication

bandwidth (DFCB) control. IEEE Transactions on Automatic Control, 49(9),
1573–1584.

iberzon, D. (2003). Hybrid feedback stabilization of systems with quantized
signals. Automatica, 39(9), 1543–1554.

iu, T., Jiang, Z. P., & Hill, D. J. (2012). A sector bound approach to feedback
control of nonlinear systems with state quantization. Automatica, 48(1),
145–152.

iu, C. Y., Sun, Z. Y., Meng, Q., & Sun, W. (2021). Robust control of high-order
nonlinear systems with unknown measurement sensitivity. Science China.
Information Sciences, 64(6), 1–3.

Liu, J., Wei, L., Xie, X., Tian, E., & Fei, S. (2018). Quantized stabilization
for T–S fuzzy systems with hybrid-triggered mechanism and stochastic
cyber-attacks. IEEE Transactions on Fuzzy Systems, 26(6), 3820–3834.

Lu, M., & Liu, L. (2020). Quantized output regulation of minimum-phase linear
uncertain systems. International Journal of Robust and Nonlinear Control,
30(17), 7074–7088.

a, J., Park, J. H., & Xu, S. (2020). Command-filter-based finite-time adaptive
control for nonlinear systems with quantized input. IEEE Transactions on
Automatic Control.

eng, Y., Li, T., & Zhang, J.-F. (2016). Coordination over multi-agent networks
with unmeasurable states and finite-level quantization. IEEE Transactions on
Automatic Control, 62(9), 4647–4653.

oustakis, N., Yuan, S., & Baldi, S. (2018). An adaptive design for quantized
feedback control of uncertain switched linear systems. International Journal
of Adaptive Control and Signal Processing, 32(5), 665–680.

air, G. N., & Evans, R. J. (2000). Stabilization with data-rate-limited feedback:
Tightest attainable bounds. Systems & Control Letters, 41(1), 49–56.

hat, V. N., Jiang, J., Savkin, A. V., & Petersen, I. R. (2004). Robust stabilization of
linear uncertain discrete-time systems via a limited capacity communication
channel. Systems & Control Letters, 53(5), 347–360.

astry, S., & Bodson, M. (1989). Adaptive control: Stability, convergence and
robustness. Englewood Cliffs, NJ: Prentice-Hall.

ui, S., & Tong, S. (2016). Fuzzy adaptive quantized output feedback tracking
control for switched nonlinear systems with input quantization. Fuzzy Sets
and Systems, 290, 56–78.

ao, G. (2003). Adaptive control design and analysis. John Wiley & Sons.
ao, G. (2014). Multivariable adaptive control: A survey. Automatica, 50(11),

2737–2764.
arbouriech, S., & Turner, M. (2009). Anti-windup design: an overview of some

recent advances and open problems. IET Control Theory & Applications, 3(1),
1–19.

http://refhub.elsevier.com/S0005-1098(21)00554-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb13
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb13
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb13
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb16
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb34
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb36


Y. Zhang, J.-F. Zhang, X.-K. Liu et al. Automatica 137 (2022) 110027

T

W

i
t

atikonda, S., & Mitter, S. (2004). Control under communication constraints. IEEE
Transactions on Automatic Control, 49(7), 1056–1068.

ang, F., Chen, B., Lin, C., Li, G., & Sun, Y. (2016). Adaptive quantized control of
switched stochastic nonlinear systems. Neurocomputing, 207, 450–456.

Wang, F., Liu, Z., Zhang, Y., & Chen, C. P. (2016). Adaptive quantized controller
design via backstepping and stochastic small-gain approach. IEEE Transactions
on Fuzzy Systems, 24(2), 330–343.

Wong, W. S., & Brockett, R. W. (1999). Systems with finite communication
bandwidth constraints. II. Stabilization with limited information feedback.
IEEE Transactions on Automatic Control, 44(5), 1049–1053.

Yan, Y., Yu, S., & Yu, X. (2019). Quantized super-twisting algorithm based sliding
mode control. Automatica, 105, 43–48.

Yu, Z., Dong, Y., Li, S., & Li, F. (2018). Adaptive quantized tracking control for
uncertain switched nonstrict-feedback nonlinear systems with discrete and
distributed time-varying delays. International Journal of Robust and Nonlinear
Control, 28(4), 1145–1164.

Yu, X., & Lin, Y. (2016). Adaptive backstepping quantized control for a class of
nonlinear systems. IEEE Transactions on Automatic Control, 62(2), 981–985.

Zhang, Y., Tao, G., Chen, M., Chen, W., & Zhang, Z. (2020). An implicit
function-based adaptive control scheme for noncanonical-form discrete-time
neural-network systems. IEEE Transactions on Cybernetics.

Zhang, Y., Tao, G., Chen, M., Wen, L., & Zhang, Z. (2019). A matrix decompo-
sition based adaptive control scheme for a class of mimo non-canonical
approximation systems. Automatica, 103, 490–502.

Zhang, Q., & Zhang, J.-F. (2013). Quantized data–based distributed consensus un-
der directed time-varying communication topology. SIAM Journal on Control
and Optimization, 51(1), 332–352.

Zhang, Y., Zhang, J.-F., & Liu, X.-K. (2021). Implicit function based adaptive
control of non-canonical form discrete-time nonlinear systems. Automatica.

Zhou, J., Wen, C., & Wang, W. (2018). Adaptive control of uncertain nonlinear
systems with quantized input signal. Automatica, 95, 152–162.

Zhou, J., Wen, C., & Yang, G. (2013). Adaptive backstepping stabilization of
nonlinear uncertain systems with quantized input signal. IEEE Transactions
on Automatic Control, 59(2), 460–464.

Zouari, F., Boulkroune, A., & Ibeas, A. (2017). Neural adaptive quantized
output-feedback control-based synchronization of uncertain time-delay in-
commensurate fractional-order chaotic systems with input nonlinearities.
Neurocomputing, 237, 200–225.

Yanjun Zhang received his B.S. degree in mathematics
and applied mathematics in 2010, and M.S. degree in
applied mathematics in 2013, both from Qufu Normal
University, China, and his Ph.D. degree in control theory
and control engineering in 2017 from Nanjing Univer-
sity of Aeronautics and Astronautics, China. From Jun.
2019 to Jun. 2021, he was a postdoc in the Institute of
Systems Science, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences. He is currently
an associate professor in the School of Automation,
Beijing Institute of Technology. His current research

nterests include adaptive control, quantized control, nonlinear systems, and
heir applications.
8

Ji-Feng Zhang received the B.S. degree in mathematics
from Shandong University, China, in 1985 and the Ph.D.
degree from the Institute of Systems Science (ISS), Chi-
nese Academy of Sciences (CAS), China, in 1991. Since
1985, he has been with the ISS, CAS, and now is the
Director of ISS. His current research interests include
system modeling, adaptive control, stochastic systems,
and multi-agent systems. Dr. Zhang is a Fellow of IFAC,
member of the European Academy of Sciences and
Arts, and Academician of the International Academy for
Systems and Cybernetic Sciences. He received twice the

Second Prize of the State Natural Science Award of China in 2010 and 2015,
respectively. He is a Vice-Chair of the IFAC Technical Board, Vice-President of the
Chinese Association of Automation, Vice-President of the Chinese Mathematical
Society, Associate Editor-in-Chief of Science China Information Sciences, and
Senior Editor of IEEE Control Systems Letters. He was a member of the Board
of Governors, IEEE Control Systems Society; Convenor of Systems Science
Discipline, Academic Degree Committee of the State Council of China; Vice-
President of the Systems Engineering Society of China; and Editor-in-Chief,
Deputy Editor-in-Chief or Associate Editor of more than 10 journals, including
Journal of Systems Science and Mathematical Sciences, IEEE Transactions on
Automatic Control and SIAM Journal on Control and Optimization etc. He was
General Co-Chair or IPC Chair of many control conferences.

Xiao-Kang Liu received the B.S. degree in automatic
control and the Ph.D. degree in control science and
engineering from Huazhong University of Science and
Technology (HUST), Wuhan, China, in 2014 and 2019,
respectively. From Jul. 2017 to Aug. 2018, he was
a visiting scholar with the Department of Electrical,
Computer, and Biomedical Engineering, University of
Rhode Island, RI, USA. From Oct. 2019 to Feb. 2021,
he was a postdoctoral research fellow with the School
of Electrical & Electronic Engineering, Nanyang Tech-
nological University (NTU), Singapore. Since Mar. 2021,

he has been working as a lecturer with the School of Artificial Intelligence
and Automation, HUST. His research interests include hybrid control, distributed
control and optimization, DC microgrids.

Zhen Liu received the B.Eng. degree in automation
from the Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China, in 2010, and the Ph.D. degree
in control theory and control engineering from the
Institute of Automation, Chinese Academy of Sciences,
Beijing, China, in 2015. He is currently an associate pro-
fessor with the Integrated Information System Research
Center, Institute of Automation, Chinese Academy of
Sciences. His research interests include robust adaptive
control, fuzzy control, and applications of aerospace
systems.

http://refhub.elsevier.com/S0005-1098(21)00554-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb41
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb41
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb41
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb42
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb43
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb43
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb43
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb44
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb44
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb44
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb44
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb44
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb45
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb45
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb45
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb45
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb45
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb46
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb46
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb46
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb46
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb46
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb47
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb47
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb47
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb48
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb48
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb48
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb49
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb49
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb49
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb49
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb49
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50
http://refhub.elsevier.com/S0005-1098(21)00554-9/sb50

	Quantized-output feedback model reference control of discrete-time linear systems
	Introduction
	Problem statement
	Fundamentals of output feedback MRC
	Quantized-output feedback control design
	Quantized-output feedback MRC law structure
	Technical lemmas
	Control design for systems with n-m=1
	Control design for systems with an arbitrary relative degree

	Simulation study
	Concluding remarks
	Acknowledgments
	References


